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Abstract. Reliable information on historical and current population dynamics is central
to understanding patterns of growth and decline in animal populations. We developed a
maximum likelihood-based analysis to estimate spatial and temporal trends in age/sex-specific
survival rates for the threatened southern sea otter (Enhydra lutris nereis), using annual
population censuses and the age structure of salvaged carcass collections. We evaluated a wide
range of possible spatial and temporal effects and used model averaging to incorporate model
uncertainty into the resulting estimates of key vital rates and their variances. We compared
these results to current demographic parameters estimated in a telemetry-based study
conducted between 2001 and 2004. These results show that survival has decreased
substantially from the early 1990s to the present and is generally lowest in the north-central
portion of the population’s range. The greatest temporal decrease in survival was for adult
females, and variation in the survival of this age/sex class is primarily responsible for
regulating population growth and driving population trends. Our results can be used to focus
future research on southern sea otters by highlighting the life history stages and mortality
factors most relevant to conservation. More broadly, we have illustrated how the powerful
and relatively straightforward tools of information-theoretic-based model fitting can be used
to sort through and parameterize quite complex demographic modeling frameworks.
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INTRODUCTION

Spatial and temporal variation in population abun-

dance is a universal characteristic of all plant and animal

species, and understanding the causes of such variation

is a fundamental goal of population biologists (e.g.,

Caughley 1977). While it is often straightforward to

detect changes in the abundance of well-studied species,

determining the cause of observed change is generally

much more difficult. Populations vary in abundance due

to changes in the vital rates of individuals (birth, death,

immigration, and emigration), which are shaped by a

potentially vast array of biotic and abiotic factors.

Nonetheless, understanding the primary causes of

spatial and temporal variation of demographic rates is

a necessary step in the assessment of population viability

(Morris and Doak 2002), and analytical models that

incorporate spatial and temporal differences in demo-

graphic rates have been important tools in the con-

servation of threatened populations such as the

Yellowstone grizzly bear (Ursus arctos horribilis) (Eber-

hardt et al. 1994, Doak 1995, Pease and Mattson 1999)

the Northern Spotted Owl (Strix occidentalis caurina)

(Lande 1991, Forsman 1993), and many other taxa

(Beissinger and McCullough 2002).

In spite of these examples, there are few (or no)

reliable estimates of vital rates for many endangered or

threatened species, especially wide-ranging species such

as mammalian carnivores. Direct estimates are difficult

and costly to acquire, requiring longitudinal records

from marked individuals obtained through tagging,

band recovery, or biotelemetry methods (White 1983,

Pollock et al. 1990, Lebreton and Gonzalez-Davila

1993). For species with broad geographic ranges and

long life spans it is particularly difficult to obtain data

from marked individuals over long enough time periods

and over sufficiently large areas to form a representative

picture of the key demographic drivers of population

dynamics. In the few cases where demographic data

have been collected over appropriate spatial and

temporal scales for large vertebrates, the resulting data

sets have provided powerful tools for projecting future
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population dynamics and/or identifying key life history

stages for focusing management efforts (e.g., Eberhardt

et al. 1994, Coulson et al. 1999, Pease and Mattson 1999,

Milner-Gulland et al. 2000, Schaefer et al. 2001, Walters

et al. 2002, Runge et al. 2004). However, for most large

species it is either infeasible to initiate large-scale mark–

recapture programs, or else mark–recapture programs

were not in place when important population dynamics

were occurring. In the case of the southern sea otter

(Enhydra lutris nereis), for example, a telemetry-based

study now underway provides estimates of recent

demography, but cannot shed light on past population

declines.

Given these requirements of mark–recapture studies,

it is clearly important to develop alternative methods for

inferring demography of populations, making most

effective use of whatever data sets are available (Doak

and Mills 1994). One alternative method is the indirect

estimation of vital rates from population age structure

(Caughley 1977). Although the reliability of indirect

estimates based on standing age structure has tradition-

ally been restricted by assumptions of constant pop-

ulation size or constant growth rate, several methods

using both Bayesian and information-theoretic ap-

proaches have been proposed that circumvent these

assumptions (e.g., Eberhardt 1988, Wood 1994, Udevitz

and Ballachey 1998, Doak and Morris 1999, Miller and

Meyer 2000, Nelson et al. 2004, Gross et al. 2005). For

many vertebrate species, carcasses can be collected with

little effort, and age estimates derived by sectioning of

bones or teeth (Matson 1981, Bodkin et al. 1997),

making it simpler and more accurate to estimate the

distribution of ages at death than that of living animals.

These data, too, can be used to infer vital rates, and this

approach was recently used to assess the long-term

impact of a major environmental perturbation (the

Exxon Valdez oil spill) on a population of sea otters in

Prince William Sound (Udevitz and Ballachey 1998,

Monson et al. 2000a). In addition to age-structure

information, simple population counts are commonly

available for many populations and can be useful for

evaluating alternative hypotheses about demographic

variation (Hilborn and Mangel 1997, Morris and Doak

2002), particularly if these counts are structured by

developmental stage (e.g., juveniles vs. adults; Pascual

and Adkison 1994, Holmes and York 2003), or are used

in conjunction with other data.

Southern (or California) sea otters (see Plate 1) are a

protected subspecies with ‘‘Threatened’’ status under the

Endangered Species Act (USFWS 2003), making the

understanding of its population dynamics both interest-

ing and important. In particular, reliable demographic

information is needed to guide decision making on

management options currently under consideration (G.

Sanders, personal communication) and to ensure the

long-term recovery of this population (USFWS 2003).

Although range-wide counts indicate unequivocally that

population recovery ceased in the mid 1990s (Estes et al.

2003; also see Fig. 1), it is less clear what specific

demographic changes were responsible for the change in

population dynamics. Data presented by Estes et al.

(2003) indicate that the recent periods of decline in

southern sea otters are associated with increased mortal-

ity rather than decreased birth rates. Here, we inves-

PLATE 1. A southern sea otter (Enhydra lutris nereis) near Monterey, California, USA. Photograph courtesy of Sahron Blaziek
and the Monterey Bay Aquarium.
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tigate in greater detail the spatial and temporal changes

in age-specific survival rates that halted population

growth in the 1990s. To accomplish this, we extend the

methodology described by Monson et al. (2000a) to

include an assessment of spatial as well as temporal

changes in survival, to incorporate other data sources

besides carcass age structure (specifically, age-structured

population counts) and to more formally incorporate

model uncertainty.

California sea otters are somewhat unusual among

large carnivores in that there is a deep and broad set of

empirical and modeling studies to inform the type of

analysis we develop. While this quantity and quality of

data is not required for our methods to work, using

them in this context allows a more informed evaluation

of their reliability and the biological plausibility of the

results. In this sense, sea otters provide a useful case

study for developing techniques that can be applied to

other large, wide-ranging carnivore species for which

less information may be available. A particular concern

that we discuss in our presentation is how best to

constrain the number of alternative model forms to

consider. Especially when biological understanding of a

population is good, model complexity and hence the

number of biologically plausible models that should be

considered can rise dramatically. We demonstrate

practical approaches for dealing with this challenge.

METHODS

Part 1: Estimating past demographic rates (1992–2001)

Two types of field data were available for the period

of interest: population counts and beach-cast carcasses

classified by age, sex, and location of recovery. Stand-

ardized, range-wide population counts of the southern

sea otter are conducted twice annually: a spring census

(early May) provides the primary index of change for

this population, while a fall census (early November) is

conducted primarily to better estimate pup production

rates (Estes and Jameson 1988, Estes et al. 2003). The

net results of the survey are uncorrected, minimum

counts of independent otters and dependent pups (0–6

months of age [Riedman et al. 1994]). Although no

formal correction factor is available to estimate true

population size, Estes and Jameson (1988) found the

detection probability to be very high (90–95%); there-

fore, following previous analyses (e.g., Estes et al. 2003,

Gerber et al. 2004) we use the uncorrected counts as a

proxy for total population size and treat the associated

observation error as a parameter to be estimated in the

model-fitting process. For independent otters we used 11

spring counts made during the period 1992–2002 (Fig.

1). For dependent pups we used the average of the

spring and fall counts made during the same period: due

to the continuous nature of reproduction in sea otters

(see Reproduction), averaging the two pup counts had

the effect of reducing sample noise caused by year-to-

year variation in the timing of seasonal peaks in pup

production.

The California Department of Fish and Game and the

Biological Resources Discipline of the U.S. Geological

Survey (USGS) have maintained a salvage network to

collect beach-cast carcasses of sea otters since 1968.

Carcass recovery is largely opportunistic and relies

heavily on voluntary public participation (although

there are targeted beach walks in certain areas); thus

the rate of carcass recovery varies across the range as a

function of human population density (Pattison et al.

FIG. 1. Annual range-wide counts of southern sea otters, Enhydra lutris nereis, conducted between 1984 and 2002. Values
represent the three-year running average of the spring counts of independents (solid line) and the average of the spring and fall
counts of dependent pups (dashed line).
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1997, Estes et al. 2003). In spite of this, a remarkably

high proportion (;50%) of all sea otter deaths in

California are eventually recovered as beach-cast

carcasses (Estes et al. 2003, Gerber et al. 2004).

Information about all carcasses, including date of

recovery, sex, age class, length, mass, condition,

recovery location, and cause of death, is added to a

database maintained by U.S. Geological Survey . Since

1992, tooth-age estimates have been collected from all

beach-cast carcasses, with the exception of pups (,100

cm total length) and those for which an unbroken

premolar could not be obtained. Age at death was

estimated by cementum analysis of a single, upper

premolar tooth (Bodkin et al. 1997) using consistent

methods (Matson 1981), and each age estimate was

accompanied by a quality code of A (excellent), B

(good), or C (poor). For the current analysis, we used

ages from all carcasses collected between January 1992

and December 2001 with estimated age of 1 or more and

quality code of A or B, for a total sample size of 742. We

excluded 0-year-old carcasses (pups and recently weaned

juveniles) because we believe they may be underrepre-

sented in the carcass record (Ames et al. 1983, Pattison

et al. 1997, Estes et al. 2003), and thus we implicitly

assume that trends in the relative frequency of 1-year-

old juvenile carcasses are sufficiently representative of

trends for 6–12 month old juveniles. No significant age

biases have been found in the representation of older

carcasses in previous sea otter studies (Ames et al. 1983,

Pattison et al. 1997, Udevitz and Ballachey 1998,

Monson et al. 2000a). Based on this fact, and on the

high carcass recovery rate overall, we believe this

database provides a relatively unbiased index of changes

in the frequency distribution of age at death. Note that

our analysis depends only on relative age frequencies,

not on absolute numbers, and thus any year-to-year

variation in the total numbers of carcasses recovered

(e.g., Estes et al. 2003) should not influence our model

results.

Overview of modeling approach.—We use the field data

just described to estimate the parameters of a series of

alternative models of sea otter demography, with

particular emphasis on temporal and spatial changes

survival rates. In the course of this model fitting, we also

gain the information needed to assess the relative

likelihood of each model as a good explanation of

patterns in otter demography. Multiple model-fitting

frameworks are now commonly used in ecology and

wildlife biology, including frequentist methods, max-

imum likelihood/information theory approaches, and

Bayesian modeling. While there are many advocates for

each of these general methodologies, the underlying

goals of model fitting are usually the same (e.g., Pascual

and Kareiva 1996, Stephens et al. 2005), even when the

jargon used by different workers to describe similar

models and fitting methods diverges. We use a maximum

likelihood/information theory framework in this paper,

and thus we describe the model structures and fitting

methods in the terminology commonly used in this

approach, and in particular to the fitting of demographic

models using observations of population size and

structure data (e.g., Doak and Morris 1999, Monson

et al. 2000a, Holmes and York 2003). Our general

approach can be broken into four steps: (1) the

construction of alternative functions to predict survival

rates by age, sex, time period, and geographic area; (2)

the use of these survival rates to construct population

projection matrices that predict population growth and

structure over the study period; (3) estimation of the

parameter values governing the survival rates that result

in the best predictions of the observed data, based on

maximum likelihood comparisons of the predicted

population counts and carcass age structures with the

field data; (4) the use of information theory methods

(Burnham and Anderson 2002) to select the set of ‘‘best’’

models (those model forms that provide most predictive

power and maximum parsimony). We then use this set

of models to describe underlying demographic changes

over the study period, while accounting for model

uncertainty.

In the following sections we explain in detail each of

these four steps.We also note that, while for many species

it is most reasonable to estimate temporal changes in

demography as stochastic variation around mean values,

this approach is not consistent with known sea otter

biology, for which populations typically show extraordi-

narily little effect of random interannual variability

(Eberhardt and Siniff 1988, Siniff and Ralls 1991,

Monson et al. 2000a, b). Thus, we confine our modeling

to deterministic approaches, while we consider a wide

range of temporal and spatial patterns in demography.

All model programming and associated statistical anal-

yses were conducted using the MATLAB programming

language (MathWorks, Natick, Massachusetts, USA).

Model structure.—The projection matrix models we

use classify otters by age, sex, and geographic region,

and allow temporal change in rates in one of two general

patterns. In each year, this results in an age-classified

Leslie matrix (Leslie 1945) for otters of each sex in each

region. We formulated our matrices in terms of 20

discrete age classes (age x ¼ 1, 2, . . . 20), with the time-

step set to one year. This simplifies presentation of

results and corresponds to the discrete age scores

resulting from the tooth cementum analysis and the

annual population counts; it is also consistent with

previous formulations of sea otter demographic models

(e.g., Eberhardt and Siniff 1988, Eberhardt 1995,

Udevitz and Ballachey 1998, Monson et al. 2000a,

Gerber et al. 2004). We note, however, that sea otters

actually reproduce throughout the year, and so our

discrete matrices represent an approximation to a birth-

flow population. Specifically, we assume that a ‘‘typical’’

individual entering the first age class (x¼ 1) is a recently

weaned juvenile of 6 months, and thus the survival rate

for x ¼ 1 actually corresponds to the probability of

surviving from 6 months to 18 months of age, while

M. TIM TINKER ET AL.2296 Ecological Applications
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survival for x ¼ 2 corresponds to the probability of

surviving from 1.5 years to 2.5 years of age, and so on.

We did not consider immigration or emigration

between geographic regions in this model. The challenge

in making these models is thus to construct a reasonable

range of possible forms for survival and reproductive

rates.

Reproduction.—While reproduction in sea otters

occurs throughout the year, reproduction is effectively

an annual event at the level of the individual: gestation

lasts approximately 6 months, followed by the birth of a

single offspring that is dependent on exclusive maternal

care for a period of ;6 months, resulting in a maximum

average reproductive output of one weaned offspring

per female, per year (Wendell et al. 1984, Jameson and

Johnson 1993), a fact that facilitates matrix discretiza-

tion. The age of first reproduction reported for southern

sea otters ranges from 2 to 5 years of age, with most

females having produced their first pup by age 4 (Sinha

et al. 1966, Jameson and Johnson 1993, Riedman et al.

1994). The annual probability of a mature female sea

otter producing an independent juvenile is the product

of two vital rates, the annual birth rate (b) and the

weaning success rate (w, defined as the probability that

an offspring will be successfully reared from birth to

weaning at 6 months, conditional upon survival of the

mother). Published estimates of b for southern sea otters

range from 0.88 to 1.07, depending on the method of

calculation (Siniff and Ralls 1991, Eberhardt and

Schneider 1994, Riedman et al. 1994, Eberhardt 1995),

but the accumulating weight of evidence suggests that b

is relatively invariant within and between sea otter

populations (Monson et al. 2000b). In contrast, w can

vary as a function of female age (Riedman et al. 1994) or

body condition (Monson et al. 2000b). Examination of

our own telemetry-based data (Appendix), together with

the results of previous analyses (Estes et al. 2003, Tinker

2004), suggested that neither birth rate nor pup survival

have changed measurably in southern sea otters over the

past two decades: we thus treat age-specific reproductive

rate (bx) and weaning success rate (wx) as fixed for the

purpose of our current analyses. We set the age of first

reproduction to 2.5 years (Monson et al. 2000b), bx to a

constant value of 0.98, and modeled wx as a continuous

function of age:

wx ¼ �1:231x�0:4845 þ 1:0922: ð1Þ

Eq. 1 was empirically derived from our telemetry-

based data set (see Methods: Part 2 and Appendix),

leads to a success rate that increases asymptotically with

the mother’s age, and has a population-wide average of

;0.56, consistent with previous studies (Siniff and Ralls

1991, Eberhardt and Schneider 1994, Riedman et al.

1994, Eberhardt 1995).

Survival.—The probability that a single sea otter (age

x, sex y, located within geographic area g) would survive

from year t to year t þ 1 was estimated using a logit

function of the following form:

sx;y;t;g ¼
expðfx;y;t;gÞ

1þ expðfx;y;t;gÞ
ð2Þ

where the linear function fx,y,t,g specifies the effects of

age (x), sex (y), time (t), and location (g). We considered
a range of possible main effects and interactions between

the main effects: this resulted in a large number of
alternate models, all of which were biologically reason-

able and reflect important differences in hypothesized
mortality patterns. Table 1 summarizes the general

forms that we used to construct fx,y,t,g functions. Below,

we discuss the four basic components of fx,y,t,g in terms
of age, sex, time, and location effects, fx, fy, ft, and fg,

respectively, which sum to fx,y,t,g. Although each of these
subfunctions can include many interaction effects, this

breakdown facilitates description of the model forms
used.

1. Age effects.—The function we use to model age-

specific variation in survival, fx, is a third-order
polynomial function plus an additional term, h4/x, that
allows greater flexibility in fitting juvenile survival. Like
the competing-risks function that has previously been

used to model otter survivorship (Siler 1979, Eberhardt

1985), this function can generate the ‘‘inverted U’’
shaped survival curve, typical of large mammals

(Caughley 1977), but does so with fewer parameters
(Tinker 2004).

2. Sex effects.—We incorporated male–female differ-

ences in survival using a simple additive main effect and
an interaction between age and sex (Table 1).

3. Temporal changes.—To allow for temporal changes
in age- and sex-specific survival, we used one of two

functions (Table 1): f 1
t was used to model smoothly

changing survival rates, while f 2
t was used to model

discrete time effects. As shown in Table 1, f 1
t , allows for

a linear time effect. However, by adding additional

TABLE 1. A summary of the general functional forms used to
model survival rates.

Main effect Component Functional form

Age fx fx ¼ xh1 þ x2h2 þ x3h3 þ h4

x

Sex fy fy ¼ yh5 þ xyh6
Time f 1

t f 1
t ¼ th7 þ txh8 þ tyh9 txyh10

or
f 2
t f 2

t ¼ Ah7 þ Axh8 þ Ayh9
þ Axyh10

Location fg fg ¼ Bh11 þ Bxh12 þ Byh13
þ Bth14 þ Bxyth15

Notes: For all equations, h1, h2, h3, etc., indicate fitted
parameters. Functions shown are for a model with all
interaction terms and for a linear time effect in f 1

t , a categorical
time effect with one time break in f 2

t , and a categorical spatial
effect with one geographical division in fg. Parameters A and B
represent switch variables and are used to control the
categorical effects of time and location, respectively. By taking
values of either 0 or 1, they can ‘‘switch on’’ other fitted
parameters in certain time periods or regions. Other model
forms that were used featured subsets of the interaction terms
shown and included both second- and third-order effects in f 1

t ,
up to three discrete time periods in f 2

t , and between zero and
three geographical divisions in fg.
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parameters we also evaluated second- and third-order

time effects. In contrast to the continuous temporal

changes allowed by f 1
t , function f 2

t allows steady rates

for variable numbers of years followed by a discrete

breakpoint, at which new rates apply. In the version of

f 2
t shown in Table 1, A is a switch variable, A¼ 0 if t ,

ht, A ¼ 1 if t � ht, and ht is a fitted parameter that

specifies the temporal breakpoint in survival probabil-

ities. We also evaluated models with zero or two

temporal breakpoints. Both f 1
t and f 2

t allow for

interactions between time, age, and sex.

4. Spatial variation.—We incorporated spatial varia-

tion in survival by defining discrete geographic areas:

specifically, we divided the sea otter’s range in California

into different regions within which demographic rates

were assumed to be constant, but between which rates

were allowed to vary. The locations of boundaries

between groups, and the actual number of groupings,

were treated as unknowns to be determined by

maximum likelihood analysis. To make this fitting

manageable, we first divided the current range of the

southern sea otter into 10 contiguous coastline segments

(Fig. 2), corresponding to areas of similar benthic

habitat type (Laidre et al. 2001), with each roughly

equal to the annual home range of a single adult female

sea otter (Ralls et al. 1996). Spatial groups (g) were next

defined as combinations of one or more of these

coastline segments with similar demographic rates. We

did not require that all coastline segments within a

demographic group be geographically contiguous: for

example, assuming only two group levels (g¼1 or 2, and

assuming the first segment is always set to 1), 3 of the

FIG. 2. Range of the southern sea otter along the mainland coast of California (range limits based on 2003 survey data) divided
into 14 sections of similar subtidal habitat (Laidre et al. 2001). These sections were used as fundamental geographical units for our
analysis of spatial variation in demography, although the northern-most units (1a and 1b) and the southern-most units (10a–d)
were collapsed into sections 1 and 10, respectively, in order to achieve sufficient carcass sample sizes for each of the 10 remaining
coastline sections.
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512 possible ways to classify the 10 coastline segments

are shown in Table 2.

We constructed models with up to four spatial groups

and all possible permutations of coastline segments

within each group. As described above for f 2
t , we used

switch variables (B) in fg to model geographic grouping

effects (Table 1). For the version of fg shown in Table 1,

there are two groups (B¼ 1 if g¼ 2, and B¼ 0 if g¼ 1)

and interactions of area with age, sex, and time. By

adding additional switch variables (and thus additional

fitted parameters), we allowed for up to four grouping

levels. The location of each spatial breakpoint was also a

fitted parameter: thus example i in Table 2 would require

one additional parameter (specifying the breakpoint

between coastline segments 5 and 6), while example iii in

Table 2 would require two additional parameters

(specifying breakpoints between coastline segments 1

and 2 and between coastline segments 5 and 6).

Matrix projection and maximum likelihood analysis.—

Altogether, the subfunctions shown in Table 1 can be

substantially modified by adding or removing individual

terms, resulting in models with and without certain main

and interaction effects, as well as different numbers of

spatial and geographic groupings. Each unique fx,y,t,g
function was used to create a series of annual projection

matrices that together represent a hypothetical model of

demographic variation in the southern sea otter between

1992 and 2001. For each model i (i¼1 to I, where I is the

total model count) these projections are also a function

of the particular set of parameter values, j, used, and we

will therefore denote a unique projection model as Mi,j.

To initialize the model in year 1992 we used a

population vector made from the product of the

observed 1992 population count (independents þ de-

pendent pups) and the stationary age distribution (SAD)

associated with the matrix transition probabilities at t¼
1. The model start-point is thus assumed to be

immediately precensus, or early May. (This is of course

somewhat arbitrary because reproduction is continu-

ous.) We used the SAD in the absence of any better

estimates of age structure and in light of the fact that

population growth had been relatively constant for

many years prior to the study period (at lambda¼ 1.05;

see Fig. 1 and Estes et al. 2003), presumably allowing the

age structure to stabilize. Each model generates three

types of predictions that are used in maximum like-

lihood calculations. First is the age/sex frequency

distribution of carcasses, which is a straightforward

result of the series of matrices and the starting

conditions. Somewhat more complex to estimate are

the number of independent and dependent animals in

the population. The number of older animals predicted

in each year is simply the product of each year’s

projection matrix and the previous population vector.

However, annual census data also tracks dependent

pups, and, combined with continuous reproduction, this

results in the need to separately estimate dependent pups

(those under 6 months age) and independent pups (those

between 6 and 12 months age). We estimate the average

probability that a female of age, year, and location x, t,

and g, respectively, will produce an independent pup of

sex y as

R1
x;t;g!y ¼

1

2

bx

2
wx;t;gðsx;0;t;gÞ3=4ðs1;y;t;gÞ1=4

� �
: ð3Þ

This result assumes that half of the reproductive females

in the population will give birth within the first six

months of the year, and a typical female from this group

must survive for three-quarters of the year if her pup is

to be weaned successfully, while the weaned pup must

then survive for the remaining one-quarter of the year as

an independent juvenile. A pup sex ratio of 1:1 is also

assumed. For the remaining reproductive females (those

that pup in the second six months of the year) our

estimate of the production of dependent pups of sex y is

R2
x;t;g!y ¼

1

2

bx

2
sx;0;t;g

1

6

X6

m¼1

w0:32ln½ðm�0:5Þ=6�þ1
x

( )
ð4Þ

where m represents pup age, in months, and the total

dependency period is assumed to be six months. This

result is based on similar logic to Eq. 3, and also

incorporates the declining probability of pup mortality

through the weaning period (see the Appendix for

further explanation of how this function was derived).

The sum of Eqs. 3 and 4 was used to parameterize the

first row of the projection matrix, that is, the expected

contribution of a female of age x in location g at time t

to the first age class of sex y at time t þ 1, while the

product of Eq. 4 and the population vector at time t

(summed across all female ages and for pups of both

sexes) is the expected number of dependent pups that

would be alive during the census at t þ 1.

With the estimates of living and dying animals

estimated from these results, we can calculate the

relative likelihood of each model form and also the

single ‘‘most likely’’ set of parameter values for each

model Mi, given the observed data sets. Specifically, we

want to evaluate the relative likelihood (‘) of obtaining

the observed counts of independent otters (Nobs),

dependent pups (Pobs), and carcass age distributions

TABLE 2. Sample demographic classification schemes for 10
contiguous coastline segments spanning the entire range of
the southern sea otter.

Classification
scheme

Coastline segment

1 2 3 4 5 6 7 8 9 10

i 1 1 1 1 1 2 2 2 2 2
ii 1 2 2 2 2 2 2 2 2 2
iii 1 2 2 2 2 1 1 1 1 1

Notes: In each of the three examples (i–iii), the numbers
listed for each segment indicate their assignments to spatial
groups, where groups were defined as combinations of one or
more of these coastline segments with similar demographic
rates. Only two group levels are shown here; however, our
model allowed for up to four group levels.
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(Cobs), given the expected counts (N exp and Pexp) and

carcass age-frequency distributions (Dexp) predicted by a

model Mi,j. We estimated the likelihood of an observed

carcass age/sex distribution in a given year and location

using multinomial probabilities (Hilborn and Mangel

1997, Doak and Morris 1999):

‘ðCobs
y;t;gjMi;jÞ ¼

 X20

x¼1

Cx

!
!

C1!C2! � � �C20!
d C1

1 d C2

2 � � � d
C20

20 ð5Þ

where Cx is the observed number of carcasses and dx is

the expected proportion of carcasses in age class x for a

given year, location, and sex class. (Note that we have

dropped the additional subscripts from the right side of

the equation in the interest of brevity.) To calculate the

relative likelihood of observed population counts, we

assumed that the deviations between observed and

expected counts of independents and pups were primar-

ily due to observer error, rather than process error, and

that the deviations were normally distributed (Hilborn

and Mangel 1997):

‘ðNobs
t;g jMi;jÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffi
2pr2

N

p exp
�ðNobs � NexpÞ2

2r2
N

" #
ð6Þ

‘ðPobs
t;g jMi;jÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffi
2pr2

P

p exp
�ðPobs � PexpÞ2

2r2
P

" #
: ð7Þ

The variance terms r 2
N and r 2

P have the effect of

weighting the contribution of the two data sets accord-

ing to their relative variability, and were treated as

additional fitted parameters following Pascual et al.

(1997). As was the case for the carcass data, likelihoods

of independent and dependent otters were solved

separately for each year and coastline segment.

The net likelihood of Mi,j is equivalent to the

combined likelihood of obtaining the observed carcass

age distributions and population counts across all years

and spatial groupings, and is thus the product each of

these three likelihood values over all time periods and

spatial groupings and both sexes. Following standard

practice, we converted all likelihood values to negative

log-likelihoods [L ¼�log(‘)], and instead calculated the

sum of the associated L values (Hilborn and Mangel

1997). The maximum likelihood solution for the best

parameter estimates for model Mi was obtained by

minimizing the total L. Model fits were performed using

TOMLAB, an optimization toolbox for MATLAB

(Holmström 1999); in particular, we used the ‘‘glblsolve’’

function, a box-bounded, nonlinear global search

routine, and iterative searches were performed using a

large number of randomly selected starting points to

ensure that global minima were found (Holmström

1999).

Model comparisons.—We used information theory

criteria to compare and select models, and to formally

account for model uncertainty in our final, overall

estimates of demographic parameters (Chatfield 1995,

Burnham and Anderson 2002). For each model form,

Mi, we calculated an associated AIC value (Akaike

1973), AICi¼ 2Li,minþ 2ni, where Li,min is the minimum

negative log-likelihood value and ni is the number of

fitted parameters for model Mi. The AIC value provides

an unbiased method for comparing both nested and

nonnested model forms, penalizing models with large

numbers of parameters (Akaike 1973). The best-

supported model, given the data at hand, has the lowest

associated AIC value, AICmin, but other models may

also have considerable support as measured by Di¼AICi

� AICmin and Akaike weights, ai, which represent a

measure of the relative level of support for model i

(Burnham and Anderson 2002).

The large number of possible spatial grouping

permutations that could be included in our model

formulation presented a severe computational challenge.

Rather than finding maximum likelihood solutions for

every possible combination of functional form and

spatial grouping scheme, we used an iterative selection

approach to limit the number of grouping schemes

considered. First, using the saturated model form of fx,

fy, f
1
t , and fg (Table 1), we conducted maximum like-

lihood analysis for all possible permutations of spatial

grouping schemes with 2–4 group levels. We then

summed ai values across all models that included each

of the 9 possible breakpoints (i.e., the 9 boundaries

between the 10 coastline sections), and used ai sums as

an indication of the relative support for each break-

point. The three breakpoints with most support each

had .15% of the summed ai, for a total of 76.9%, while

all other breakpoints had ,10% (Fig. 3). We conducted

all subsequent analyses using the 15 spatial grouping

schemes that included all or a subset of these three

breakpoints (i.e., ranging from 1 to 4 grouping levels).

FIG. 3. The relative degree of model support for all
potential arrangements of 10 coastline segments into areas of
similar demography. Summed AIC weights (ai values) are
shown at each potential breakpoint: the three best-supported
breakpoint locations (between segments 1 and 2, segments 6
and 7, and segments 9 and 10) together account for 76% of the
summed AIC weights.
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The total number of alternate models thus evaluated was

2075, which included all combinations of the 15 spatial

groupings and biologically plausible formulations of

fx,y,t,g.

Following estimation of the maximum likelihood

parameters for each of these models, we limited further

consideration to the subset of Z models having Di values

below a cutoff value, Dcrit, which we set initially to 10

(Burnham and Anderson 2002). For each of the Z best

models, Mi, we generated the variance–covariance

matrix for the ni model parameters. While this matrix

may be estimated during maximum likelihood function

optimization as the negative inverse of the Hessian

(Lebreton and Gonzalez-Davila 1993), we instead used

the central difference approximation to estimate the

second derivatives of Li with respect to the ni parame-

ters, providing a more reliable (though computationally

intensive) set of variance–covariance estimates (White

and Burnham 1999). We then used the multivariate delta

method (Oehlert 1992) to derive from this matrix the

variance estimates associated with model-specific sur-

vival rates. Finally, model-averaged estimates of the

mean and unconditional sampling variance in survival

rates were calculated following Eqs. 4.1 and 4.9 in

Burnham and Anderson (2002). We evaluated the effect

of including more or fewer models by varying Dcrit.

Decreasing Dcrit to include fewer models resulted in

changes to at least some model-averaged estimates,

while increasing Dcrit to include more models produced

no significant changes (i.e., all estimates stabilized to two

decimal points); we therefore retained the initial Dcrit

value of 10.

Presentation of results.—As a graphical evaluation of

the goodness of fit of the model estimates of demo-

graphic rates we generated quantile–quantile plots (Q–Q

plots, Doksum and Sievers 1976) of expected vs.

observed carcass age-class distributions for each spatial

grouping and for three separate time periods (1992–

1994, 1995–1997, and 1998–2001). We excluded car-

casses .12 years of age from this analysis because so few

were predicted or recovered. We also compared the

matrix projection of population growth with the

observed population counts for the period 1992–2001.

Graphical comparisons of expected and observed

population dynamics were made for the population as

a whole and for three major geographic subdivisions:

ordered from north to south, these were (1) the northern

half of the range (Half Moon Bay to Lopez Pt.); (2) the

south-center of the range (Lopez Pt. to Pt. Buchon); and

(3) the southern periphery of the range (Pt. Buchon to

Gaviotta; Fig. 2).

Although we calculated demographic rates and their

unconditional variance estimates for 20 age classes, for

presentation purposes we collapsed these 20 estimates

into four broader categories corresponding to descrip-

tive life stages, which simplifies the presentation and

facilitates comparisons with telemetry-based estimates:

juveniles (first year postweaning), subadults (1.5–3.5

years of age), prime-age adults (3.5–9.5 years of age),

and old adults (9.5–19.5 years of age). For each life

stage, a, model-averaged estimates for survival rates (S
_
^
a)

were calculated by taking the arithmetic means of the

survival rates of the constituent year classes, weighted by

the stable age distribution. Variances for each life stage

were calculated from the age-class variances using the

multivariate Delta method (Oehlert 1992) and assuming

that the survival estimates for each age class within a life

stage were perfectly correlated. We calculated 95%
unconditional confidence intervals for all estimates of

survival rates using a logit-based ‘‘back transform’’

method (Burnham and Anderson 2002).

Part 2: Estimating recent demographic rates (2001–2004)

Between October 2000 and September 2003 we

captured and radio-tagged 115 adult sea otters as part

of a long-term telemetry-based study of southern sea

otters. By estimating age-, sex-, and location-specific

survival rates from these data, we provide another point

of comparison for the maximum likelihood estimates

derived from carcass age-structure and census data (Part

1). To maximize statistical power for one life stage, and

based on indications from the carcass record that

decreased adult survival might be largely responsible

for the faltering recovery of the population as a whole

(Estes et al. 2003), we intentionally biased our sampling

to capture mostly adults. Consequently, our sample sizes

were too low to present mark–recapture survival data

for juveniles or subadults.

In general, capture and instrumentation of study

animals followed methods described for previous tele-

metry-based studies of sea otters (McCleneghan and

Ames 1976, Williams and Siniff 1983, Siniff and Ralls

1991, Monson et al. 2001). We partitioned our sampling

effort into three study areas: 30 females and 13 males

were captured at Monterey peninsula (north-center of

range), 35 females and 12 males were captured at San

Simeon (south-center of range) and 25 males were

captured at Pt. Conception (southern periphery of

range; Fig. 2). At Pt. Conception we did not capture

females because only males currently utilize this south-

ernmost portion of the range. All study animals were

monitored by ground-based and/or aerial-based radio

telemetry (following methods described by Siniff and

Ralls 1991) for a minimum of two years, or until they

died or disappeared. Abdominally implanted VHF

radios were equipped with thermal monitors that

allowed us to record internal body temperature and/or

to detect mortality whenever the animal was in radio

contact; mortality was assumed when body core temper-

ature dropped below 358C, and the carcass was retrieved

for necropsy whenever possible. Daily relocation of

study animals was conducted by ground-based radio-

trackers in San Simeon and Monterey, while animals at

Pt. Conception (as well as animals that went missing

from the San Simeon and Monterey study areas) were

relocated every two weeks using a Cessna plane
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equipped with ATS radio-tracking equipment. Results

from a previous study (that utilized identical instrumen-

tation [Siniff and Ralls 1991]) suggested that the VHF

transmitters were generally reliable for two years

postdeployment, and based on deployments from the

current study with precisely known radio transmitter life

spans (N ¼ 25, mean ¼ 756 days, 95% CL ¼ 629–886

days), there appeared to be a negligible failure rate for

the first 18 months postdeployment. Consequently, we

restrict our analyses to the first two years of data for all

animals, and treat all permanent disappearances within

18 months of deployment as presumptive mortalities.

Data for animals that permanently disappeared after 18

months of deployment were deleted prior to analysis. In

total, 8 of 41 mortalities (20%) were presumptive and the

remaining 33 were confirmed (i.e., carcasses were

recovered).

Estimates of reproductive parameters were calculated

from marked study animals as described in the

Appendix. We estimated survival rates from the radio-

telemetry relocation data using the Kaplan-Meier

method, which allows for staggered entry of study

animals (Pollock et al. 1989, Bunck et al. 1995). Daily

and biweekly relocation data were collapsed to monthly

intervals prior to analysis, with all animals being

classified each month as alive, dead, or missing. Using

a monthly time-step greatly reduced the number of

animals that were not located (and thus censored from

the risk group [Bunck et al. 1995]) for a given interval,

and, for a long-lived species such as sea otters, a finer

temporal resolution was considered unnecessary (Sor-

ensen and Powell 1998). Study animals were first added

to the risk group in the month they were captured (if

they were captured during the first half of the month) or

in the subsequent month (if they were captured during

the second half of the month [Pollock et al. 1989]). We

evaluated a range of model forms in our estimation of

survival, ranging from the simplest (no variation in

survival rates) to more complex models that allowed for

location effects (i.e., study area), sex, and time effects,

and all possible interactions. We did not allow for an age

effect because all study animals included in the analysis

were considered to belong to a single life stage (adults).

Temporal effects evaluated included both annual

(corresponding to calendar year) and seasonal effects,

where seasons were defined as winter (January–April),

summer (May–August), and fall (September–Decem-

ber). Kaplan-Meier estimates of monthly survival and

associated variances (Pollock et al. 1989) were converted

to seasonal and annual survival probabilities and

variances using the Delta method (Oehlert 1992).

Parameters were estimated using maximum likelihood

techniques, with calculations performed using Program

MARK (White and Burnham 1999). For each model

form evaluated, we calculated negative log-likelihoods,

AIC values, and Akaike weights (ai) and used these to

select the best-supported suite of models, limiting

consideration to models having Di values below 10. We

used model averaging to incorporate model uncertainty

into the final estimates (refer to methods for Part 1, and

Burnham and Anderson 2002).

All estimates reported in the text are followed by 95%

confidence intervals (CI95) and the error bars in figures

represent 6 one standard error (unless otherwise

indicated). With the exception of the birth rate and

weaning success rate estimates derived from telemetry

data (Appendix), model-averaged estimates are reported

throughout, and confidence intervals and standard

FIG. 4. Profiles of ai values (left axis, dashed line) and Di values (right axis, solid line) for the 40 models with Di � 25. Including
models with Di . 10 in the analyses had no effect on model-averaged survival estimates, so only the six models with Di � 10
(indicated by the dotted line) were used for estimating model-averaged vital rates.
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errors reflect unconditional sampling variances. The

relative degree of support for specific model effects is

represented by the summed AIC weights (Rai) of all

model forms in which the effect was present.

RESULTS

Part 1: Past demographic rates (1992–2001)

There were six model forms having Di � 10 (Fig. 4,

Table 3). The model-averaged estimates of age-specific

vital rates lead to a survival schedule that is consistent

with previous models (Siniff and Ralls 1988). Annual

survival was relatively low for juveniles, increased to a

maximum for animals aged 4–7 years, and then

decreased gradually for older adults (Fig. 5). Female

survival was higher than that of males at all ages, and an

age–sex interaction was present in three of the best-fit

models (Rai ¼ 0.58), resulting in an slightly accelerated

decline in survival with age for males as compared to

females: such a pattern is consistent with the female-

biased sex ratio reported for southern sea otters

(Jameson 1989). Three of the models (Rai ¼ 0.10)

included a time–sex interaction, such that the temporal

decrease in survival was greater for females than for

males; in general, however, the model results indicated

similar temporal and spatial trends in survival for males

and females, and because changes in male survival rates

have little effect on population growth, especially for

non-monogamous species such as the sea otter, we

report all further results for females only.

TABLE 3. Maximum likelihood analysis of carcass distributions and population counts, 1992–2001: summary of six model forms
having greatest support (Di � 10).

Model support
Model description�

AIC ai Sex effect Location effect Time effect
Interactions between

main effects

4592.6 0.516 ? , / north , center , south categorical with two levels,
1992–1994 . 1995–2001

location–age: lower juvenile
survival in north

age–sex: senescence earlier
for males

4593.8 0.283 ? , / north , center , south categorical with two levels,
1992–1994 . 1995–2001

location–age: lower juvenile
survival in north

4595.8 0.104 ? , / north , center , south categorical with three levels,
1992–1994 . 1995–1997

location–age: lower juvenile
survival in north

1995–1997 , 1998–2001 time–age: post-1994 decrease
greater for old animals

4597.7 0.040 ? , / north , center , south categorical with two levels,
1992–1994 . 1995–2001

location–age: lower juvenile
survival in north

age–sex: senescence earlier
for males

time–sex: post-1994 decrease
greater for females

4597.9 0.036 ? , / north , center , south categorical with two levels,
1992–1994 . 1995–2001

location–age: lower juvenile
survival in north

time–sex: post-1994 decrease
greater for females

4599.0 0.021 ? , / north , center , south continuous decrease in
survival over time (linear)

location–age: lower juvenile
survival in north

age–sex: senescence earlier
for males

time–age: temporal decrease
greater for old animals

time–sex: temporal decrease
greater for females

Notes: Note that all six of the best models shared the same spatial grouping configuration: breakpoints between coastline
segments 6 and 7, and between 9 and 10, divided the range into three demographic regions (north, center, and south). Interactions
between the location effect and other main effects varied between models, as indicated in the far right column.

� Qualitative impacts of model parameters on survival estimates.

FIG. 5. Age-specific schedule of annual survival rates for
females (solid line) and males (dashed line). Model-averaged
estimates and their standard errors are shown for 2001 in the
north-center of the range.
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All of the well-supported models indicated that

survival rates were variable over both space and time

(Table 3). The general nature of the spatial effect was

similar for all of the best-fit models: survival was lowest

in the north and center of the range and highest in the

southern periphery of the range south of Pt. Buchon.

Survival rates decreased in all areas between 1992 and

2001 (Table 4), and all but one of the best-fit models (Rai

¼ 0.98) included this time effect as a sudden decrease in

survival after 1994. Because models with a categorical

time effect were penalized for having an additional

parameter (ht, the location of the temporal break), the

strong support for a sudden drop in survival in the mid

1990s (as opposed to a gradual decline over the 1990s) is

unlikely to be spurious.

The spatial and temporal trends in survival were

similar but not identical for all age/sex classes: for

example, all of the well-supported models included

interactions between age and location, with much lower

juvenile and subadult survival in the north half of the

range (Fig. 6). Two of the best-fit models (Rai ¼ 0.13)

also included a time–age interaction, such that older

animals experienced a greater decrease in survival after

1994 than juveniles or subadults. The greatest temporal

decrease in survival (proportionally) was thus experi-

enced by old adults; however, given the age-specific

patterns of matrix elasticity values (Fig. 7), decreased

survival of prime-age adults and subadults likely

contributed most to the observed change in population

growth over the 1990s (Gerber et al. 2004).

There was a relatively good match between predicted

and observed carcass age distributions over space and

time (Fig. 8), indicating that the model did well at fitting

vital rates to the carcass age-structure data set. Slight

deviations from linearity in the Q–Q plots were seen for

the 1992–1994 period, when the fewest carcasses were

available, but these deviations were not sufficient to

suggest any pervasive or consistent pattern of non-

linearity. Model projections also resulted in a predicted

pattern of population growth that corresponded rela-

tively well with those observed (Fig. 9A). Interestingly,

there was greater disparity between expected and

observed counts when plotted separately for the three

major geographic regions (Fig. 9B–D). The greatest

disparities were between expected and observed counts

in the south-center and southern periphery of the range.

However, annual discrepancies were negatively corre-

lated for these two regions (q ¼�0.60), suggesting that

these disparities may reflect the movement of animals

between regions.

TABLE 4. Maximum likelihood model-averaged estimates of annual survival rates for 1992–2001, derived from carcass
distributions and population counts.

Group
and year

Northern half of range South-center of range Southern periphery of range

Mean SE 95% CL Mean SE 95% CL Mean SE 95% CL

Females
Juvenile

1992 0.858 0.008 0.841, 0.873 0.890 0.008 0.873, 0.905 0.905 0.019 0.861, 0.936
2001 0.828 0.015 0.797, 0.855 0.866 0.014 0.835, 0.892 0.884 0.017 0.845, 0.913

Subadult

1992 0.859 0.005 0.849, 0.869 0.888 0.004 0.880, 0.896 0.903 0.012 0.877, 0.924
2001 0.829 0.008 0.813, 0.844 0.863 0.008 0.847, 0.878 0.881 0.013 0.854, 0.904

Adult

1992 0.888 0.006 0.877, 0.899 0.890 0.005 0.879, 0.900 0.905 0.010 0.884, 0.922
2001 0.861 0.007 0.846, 0.875 0.862 0.006 0.849, 0.875 0.880 0.011 0.857, 0.900

Old adult

1992 0.757 0.032 0.690, 0.814 0.714 0.028 0.657, 0.765 0.737 0.032 0.669, 0.795
2001 0.714 0.040 0.631, 0.785 0.668 0.032 0.603, 0.728 0.694 0.038 0.616, 0.763

Males
Juvenile

1992 0.771 0.026 0.717, 0.817 0.819 0.025 0.764, 0.863 0.842 0.028 0.778, 0.890
2001 0.727 0.033 0.658, 0.786 0.781 0.023 0.734, 0.822 0.808 0.021 0.762, 0.846

Subadult

1992 0.770 0.015 0.738, 0.798 0.813 0.014 0.785, 0.839 0.836 0.020 0.794, 0.871
2001 0.725 0.017 0.690, 0.758 0.774 0.013 0.748, 0.799 0.801 0.016 0.767, 0.831

Adult

1992 0.792 0.012 0.768, 0.815 0.798 0.014 0.768, 0.824 0.822 0.017 0.785, 0.853
2001 0.747 0.018 0.710, 0.780 0.754 0.018 0.717, 0.788 0.781 0.021 0.738, 0.819

Old adult

1992 0.618 0.056 0.504, 0.721 0.564 0.044 0.478, 0.647 0.594 0.050 0.493, 0.688
2001 0.562 0.049 0.465, 0.654 0.507 0.036 0.436, 0.577 0.538 0.043 0.454, 0.621

Notes: Results shown are means, standard errors (SE), and 95% confidence limits.
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Part 2: Recent demographic rates (2001–2004)

Maximum likelihood estimation of recent survival

rates (using radio telemetry data) resulted in 10 model

forms having Di � 10 (Table 5). The two best-supported

models (Rai¼ 0.71) included both a location effect and a

seasonal effect, but no variation due to sex or study

year. There was overwhelming model support (Rai ¼
0.80) for a difference in survival between the center of

the range (Monterey and San Simeon study areas) and

the Pt. Conception study area, but very little support

(Rai¼ 0.02) for a difference between Monterey and San

Simeon. Animals from Pt. Conception experienced

higher survival than animals from the center of the

range (Table 6), consistent with the spatial patterns

reported in Part 1 (Fig. 6). In the Monterey and San

Simeon study areas, survival during the summer months

FIG. 6. Spatial and temporal variation in survival rates are plotted for subadult females (top) and adult females (bottom). The
two horizontal axes are time (in yearly increments, 1992–2000) and geographic location within the range, measured along the 10-m
bathymetric contour that parallels the coast, from Santa Cruz in the north (0) to Pt. Conception in the south (400). The vertical axis
is the model-averaged annual rate of survival for the indicated life stage. The three-dimensional surfaces are shaded to indicate
relief, with darker shades of gray corresponding to lower survival rates; lines on the surfaces represent 25-km intervals.
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(May–August) was lower than the rest of the year (Rai¼
0.75); this trend was not evident in the Pt. Conception

study area, where summer survival rates were either

identical (Rai¼ 0.42) or slightly higher (Rai¼ 0.54) than

fall and winter survival rates.

The recent survival rates reported here for adult

females are lower than the estimates reported from the

1980s (Table 6), even though both studies used identical

methodologies and spanned the same geographical

range. In contrast, the trend for males is an increase in

survival since the 1980s. Combining the recent survival

estimates and the 1980s estimates (both derived from

mark–recapture data) with the estimates for the 1990s

(derived from carcass age-distributions and census

counts; Part 1) provides a consistent and comprehensive

picture of temporal variation in adult female survival

(Fig. 10).

DISCUSSION

In this paper we have described in detail an extension

of an existing technique (Doak and Morris 1999,

Monson et al. 2000a) that allows for incorporation of

multiple sources of demographic information (carcass

age distributions and population counts), and for

assessment of spatial as well as temporal variation in

survival for the threatened southern sea otter. Perhaps

more importantly, our general approach to incorporat-

ing uncertainty may be applicable to other threatened

populations for which there are many possible demo-

graphic scenarios to consider, but limited data for

analysis and insufficient a priori information with which

to identify a few clearly most plausible scenarios.

Animal populations are influenced by an almost infinite

assortment of deterministic and stochastic forces that

together affect demographic processes in often complex

ways. The vast majority of these forces lead to

demographic variation that is immeasurably small and

can thus be safely ignored by biologists wishing to model

populations to evaluate their viability or select among

management options. Statistical hypothesis-testing tech-

niques and model selection criteria are typically used by

biologists to reject insignificant effects or to select the

most parsimonious model or hypothesis (Hilborn and

Mangel 1997, Burnham and Anderson 2002). Unfortu-

nately, in most systems there is considerable uncertainty

underlying every component of the analysis, and the

risks of a wrong decision resulting from such uncertainty

are very rarely taken into account (Burgman et al. 1993,

Chatfield 1995). At least when dealing with a data-rich

system such as ours, we agree with Pascual et al. (1997)

that a reasonable way of dealing with this uncertainty is

to evaluate many alternative models, and then use

formal techniques for incorporating the uncertainty into

parameter estimates (Chatfield 1995, Burnham and

Anderson 2002). Although this may entail sacrificing a

certain degree of heuristic simplicity, it provides a

rigorous way to advance understanding of the complex

dynamics that are questions of biological interest in such

systems.

We emphasize that we are using an information

theoretic approach in an exploratory way here; we are

not hypothesis testing or striving for a model that is

generally applicable to all situations. The most recog-

nized and definitive reference on information theory and

model selection written for ecologists (Burnham and

Anderson 2002) is very clear on the dangers of ‘‘data

FIG. 7. Increase in annual mortality rates (q¼ 1� Sa) between 1992 and 2001 (solid bars) and corresponding survival elasticity
values (open bars) for four female life stages: juveniles, subadults, adults, and old adults. Elasticity values (Caswell 2001) provide
estimates of the relative effect of changes in vital rates for population growth and were derived algebraically from the 1992 matrix
and summed for each life stage.
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dredging,’’ a term that is somewhat vague but could be

taken to refer to any approach other than consideration

of a relatively small, exclusive set of alternative

hypotheses (e.g., a model with compared with one

without a time effect) that are not modified once model

fitting commences. While we did not modify our suite of

model forms, our methodological approach (as de-

scribed in Part 1) clearly violates Burnham and

Anderson’s maxim because we consider such a large

suite of possible model forms. However, this number of

model forms is nearly unavoidable if both temporal and

spatial variation are to be included in a structured

demographic model. We propose that if one can

properly account for model uncertainty (i.e., using

model averaged estimates and unconditional variances

[sensu Burnham and Anderson 2002]), then a maximum

likelihood approach used in this exploratory way can be

an appropriate first step towards the elucidation of key

demographic processes and spatial/temporal patterns of

variation that can be targeted by further data collection

and subsequent analyses. The approach we suggest can

focus future attention on a smaller number of well-

supported, testable hypotheses about factors underlying

FIG. 8. Quantile–quantile (Q–Q) plots of predicted carcass age class distributions for nine spatial/temporal groupings of the
historical data. Each subplot shows the cumulative proportion of observed vs. expected carcasses in the first 12 age classes: the
degree of conformity to a linear relationship with slope of 1 (represented as a diagonal line) indicates the relative goodness of fit of
the model.
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observed trends, while helping to divert attention away

from other, less important factors.

With respect to conservation of the southern sea otter,

the pertinent conclusions that can be drawn from the

analyses presented here are that age-specific survival

schedules vary considerably across the geographic range

of this population (Fig. 6), and mean survival rates

(particularly survival of prime-aged adult females)

decreased quite suddenly after 1994 (Fig. 10). In contrast

to variation in survival rates, it appears that reproduc-

tion (birth rates and weaning success) have remained

fairly constant (Estes et al. 2003, Tinker 2004). We must

add the caveat that our model could not detect trends in

mortality of very young juveniles because 0-year-old

carcasses were excluded from analysis, due to known

recovery bias. Thus the potential role of variation in

early postweaning survival as a contributing factor to

population dynamics (e.g., see Ballachey et al. 2003) is

impossible to directly assess with currently available

data, and may be underrepresented. This uncertainty

should be addressed in future field studies; however, we

believe it is unlikely that survival rates of 6-month

juveniles would exhibit spatial or temporal trends that

were substantially different from that of 12-month-old

juveniles. The concordance between independent esti-

mates of adult survival (Fig. 10) further suggests that the

age-specific patterns implicated by our analysis are not

spurious, and provides strong support for the temporal

and spatial patterns indicated by both methodologies.

The spatial and temporal trends described here can be

used to focus future research on those factors most likely

to drive population changes; in particular, factors that

impact survival of adult females in the center of the

range are of greatest concern. A number of recently

identified diseases in southern sea otters, including

protozoal encephalitis and idiopathic cardiomyopathy,

appear to be responsible for a considerable proportion

of the mortality of adult females within the center of the

range (Thomas and Cole 1996, Miller et al. 2002,

Kreuder et al. 2003), and the proximate and ultimate

causes of these diseases should be the subject of further

research. Another major source of mortality for young

animals is acanthocephalan peritonitis, caused by heavy

intestinal loads of thorny-headed worms (Mayer et al.

2003); the incidence of this disease is particularly high in

the north-center of the range, especially Monterey Bay

(Kreuder et al. 2003, Mayer et al. 2003). This geographic

distribution matches the model prediction of relatively

lower juvenile and subadult survival in the north half of

the range, and thus provides us with one possible

explanation for the observed spatial pattern. We

emphasize that the methodological approach described

here does not directly test the relative importance of

specific factors that may be affecting survival (e.g.,

diseases, contaminants, fishing gear entanglement);

however, our results can now be incorporated into

sensitivity analyses that do so (e.g., Kreuder et al. 2003,

Gerber et al. 2004).

Some of the patterns that emerged from these analyses

raise more questions than they answer. For instance, the

seasonal variation in survival rates of telemetered

animals (Table 5) is perplexing, especially considering

that the observed pattern, lower survival in the summer,

seems to be the opposite of that described for sea otters

in Alaska and Russia (e.g., Kenyon 1969, e.g., Bodkin et

al. 2000). This pattern is consistent, however, with the

reported increase in beach-cast carcasses retrieved in

summer months during periods of population decline in

California (Estes et al. 2003). One explanation for this

pattern might be increased incidence of disease in

summer, possibly associated with some seasonally

driven environmental factor (e.g., warm water algal

FIG. 9. Expected trends in population abundance (number
of independent sea otters) between 1993 and 2001, as predicted
by matrix projections using the maximum likelihood estimated
vital rates. Observed counts of independents are plotted for
comparison. Data are shown (A) for the population as a whole,
and also for three major geographic subdivisions of the range:
(B) the north (Half Moon Bay–Lopez Pt.); (C) the south-center
(Lopez Pt.–Pt. Buchon); and (D) the southern range end (south
of Pt. Buchon).
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blooms or terrestrial run-off patterns). Another poten-

tial explanation for a seasonal trend in survival relates to

female reproductive status: because there is a higher

frequency of pup births in the winter, there must be a

corresponding midsummer peak in the number of

females having recently weaned pups. Females generally

lose mass throughout the pup dependency period

(Monson et al. 2000b), and individuals that are

otherwise nutritionally stressed are probably at their

poorest body condition immediately postweaning, at

which time they are also generally in estrus and may

experience repeated mating interactions with males. The

interaction of all these stress factors may cause a

midsummer peak in female mortality; the problem with

this explanation is that the seasonal variation in survival

appears to affect males equally. A third explanation (not

mutually exclusive of the others) pertains to diet

profitability. Seasonal variation in the nutritional and/

or energy composition of some sea otter prey species is

known to occur (related to prey reproductive cycles, e.g.,

Watt et al. 2000), and may lead to seasonal peaks in the

degree of nutritional or energetic stress experienced by

some individuals. All of these possible explanations

represent testable hypotheses, and further data will be

needed to properly evaluate their relative importance. It

is worth noting, however, that the latter two explan-

ations can be encompassed by a broader hypothesis of

density-dependent population regulation. The seasonal

decrease in survival was observed for animals at the

center of the range, where recolonization occurred

earliest, densities are highest, and where it might be

expected that females would be in poor body condition

and thus subject to stress-related mortality associated

with pup weaning and/or variation in prey profitability.

At the same time, simple density-dependent mechanisms

are difficult to reconcile with the sudden decrease in

survival in the mid-1990s, especially in light of the fact

that density in the center of the range had been nearly

constant for some time.

Incorporating the estimated demographic rates into a

projection matrix predicted dynamics that were consis-

tent with observed trends for the population as a whole

between 1993 and 2001 (Fig. 9A). However, the poorer

fit between expected and observed counts within each

geographic region (Fig. 9B–D) was surprising, since the

logit functions we used allow sufficient flexibility to fit

even complex patterns of spatial and temporal variation.

To some degree this failure to closely track year-to-year

variation in observed counts reflects the constraining

effects of the continuous functions fit to the carcass age-

structure data, which will tend to predict gradual

changes in population numbers rather than vacillating,

short-term variations, regardless of patterns in the

population counts that are simultaneously fit with the

models. Another contributing cause of the discrepancies

is highlighted by the negatively correlated discrepancies

in adjoining areas, suggesting that some of the variation

in counts at the regional level reflects movement of

animals between regions, a process not accounted for in

our current projection matrix. It is likely that this type of

regional redistribution primarily involves males and not

TABLE 5. Maximum likelihood analysis of mark–resight survival data, 2001–2003: summary of 10 model forms having greatest
support (Di � 10).

Model
support

Model description

AIC ai
Sex
effect

Spatial
variation�

Yearly
variation Seasonal variation

Season–location
interaction

254.3 0.541 no (1 ¼ 2) , 3 no summer , winter and fall
in areas 1 and 2

summer . winter and
fall in area 3

256.6 0.172 no (1 ¼ 2) , 3 no summer , winter and fall
in areas 1 and 2

no seasonal variation
in area 3

257.7 0.097 no no no no no
259.3 0.043 no (1 ¼ 2) , 3 no no no
259.5 0.040 ? . / no no no no
259.9 0.032 no no no summer , winter and fall no
260.1 0.029 no no 2003 , 2001 and 2002 no no
260.9 0.020 no 2 , 1 , 3 no no no
261.3 0.016 ? . / (1 ¼ 2) , 3 no no no
263.3 0.006 no (1 ¼ 2) , 3 2003 , 2001 and 2002 no no

� Spatial variation effect allows for different survival estimates in three study areas: 1, Monterey; 2, San Simeon; 3, Pt.
Conception.

TABLE 6. Maximum likelihood model-averaged estimates of
annual survival rates for adult sea otters, derived from
telemetry data.

Sex/study group Mean SE 95% CL

Females

1984–1986, center of range� 0.91 0.088 � � �
2001–2003, Monterey peninsula 0.832 0.059 0.683, 0.917
2001–2003, San Simeon 0.831 0.060 0.682, 0.916

Males

1984–1986, center of range� 0.61 0.167 � � �
2001–2003, Monterey peninsula 0.833 0.060 0.683, 0.918
2001–2003, San Simeon 0.833 0.060 0.681, 0.918,
2001–2003, Pt. Conception 0.864 0.095 0.567, 0.956

� Estimates reported by Siniff and Ralls (1991).
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females, as males are more mobile than females (Ralls et

al. 1996), and long-distance seasonal movements by

some males between the south and center of the range

have been reported (Jameson 1989, Tinker 2004).

Movement between subpopulations could (and should)

be included in future analyses and management consid-

erations, and data from ongoing telemetry studies (U.S.

Geological Survey, unpublished data) and previous

studies of this population (Ralls et al. 1996) can be

used to parameterize individual movement rates.

The modeling of populations is at its heart an effort to

assemble disparate sources of information into a

coherent whole. If the data we relied on to construct

models, especially demographic models, were simple,

then comparatively simplistic statistical models would

be sufficient to understand these data and formulate

predictions from them. Unfortunately, highly complex

and fragmented data sets are far more common for most

wildlife populations, and it is thus surprising that more

attention has not been paid to the use of multiple data

sources and the uncertainties inherent in their use.

Nowhere is this more true than in the realm of

demographic modeling. While there is increasing con-

cern about these issues (e.g., Chatfield 1995, Hilborn

and Mangel 1997, Burnham and Anderson 2002, Buck-

land et al. 2004), flexible tools with which to unite

multiple data sources and to select the most appropriate

model forms are still limited, as are examples of their use

(Pascual et al. 1997, Link et al. 2002, but see Holmes and

York 2003, Kauffman et al. 2004, Rivot et al. 2004).

Here, we have illustrated how the powerful and

relatively straightforward tools of information-theoret-

ic-based model fitting (Burnham and Anderson 2002)

can be used to sort through and parameterize quite

complex demographic modeling frameworks. We have

paid particular attention to the estimation of parameter

uncertainty because in our system, as for most, a clear

understanding of the uncertainties in spatial and

temporal trends is of key importance. While all circum-

stances will not allow the use of the type of unified

model selection process that we have employed here,

when it is possible, we believe that Burnham and

Anderson’s (2002) approach yields benefits that more

than offset its added complexity.
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